If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=16H^2+84H+5
We move all terms to the left:
-(16H^2+84H+5)=0
We get rid of parentheses
-16H^2-84H-5=0
a = -16; b = -84; c = -5;
Δ = b2-4ac
Δ = -842-4·(-16)·(-5)
Δ = 6736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6736}=\sqrt{16*421}=\sqrt{16}*\sqrt{421}=4\sqrt{421}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-4\sqrt{421}}{2*-16}=\frac{84-4\sqrt{421}}{-32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+4\sqrt{421}}{2*-16}=\frac{84+4\sqrt{421}}{-32} $
| 3/5x=1/2*250 | | 6 | | -1+5^(3x+4)=124 | | 4x=x+99 | | -1+5^3x+4=124 | | 3b-46=b | | 17t+32=15t-12 | | 18-(x+4)^2=2 | | (x-28)°=90 | | 6+4x=x-12 | | 2p+14=7p-32 | | 3+4d-14=15-5d-14 | | x+(x-35)=137 | | 11y+36=15y-12 | | 8=18x+1 | | 3/4x-35=1/2x | | 4 | | 4 | | 3m-1=m-4 | | -y/2=40 | | 5a-92=a | | X+7=3x-25 | | 20x-11=-19 | | -3/4x+9=-1/2x+8 | | 2s+32=14s-28 | | 3y-10=2y+1 | | -5x+3=2x-11 | | 10x+5=-3x-2 | | 1/3n+2=18 | | 2(4p-2)=3(p+2) | | 99-27+4x=180 | | -6=-16x-12 |